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In the present paper a model with competing ternary (J2) and binary (J1)
interactions with spin values ± 1, on a Cayley tree is considered. One studies the
structure of Gibbs measures for the model considered. It is known, that under
some conditions on parameters J1, J2 (resp. in the opposite case) there are three
(resp. a unique) translation-invariant Gibbs measures. We prove, that two of
them (minimal and maximal) are extreme in the set of all Gibbs measures and
also construct two periodic (with period 2) and uncountable number of distinct
non-translation-invariant Gibbs measures. One shows that they are extreme.
Besides, types of von Neumann algebras, generated by GNS-representation
associated with diagonal states corresponding to extreme periodic Gibbs mea-
sures, are determined. Namely, it is shown that an algebra associated with the
unordered phase is a factor of type IIIl, where l=exp{−2bJ2}, b > 0 is the
inverse temperature. We find conditions, which ensure that von Neumann
algebras, associated with the periodic Gibbs measures, are factors of type IIId,
otherwise they have type III1.

KEY WORDS: Cayley tree; competing interactions; Gibbs measure; GNS-
construction; Hamiltonian; von Neumann algebra.

1. INTRODUCTION

One of the central problems in the theory of Gibbs measures is the
description of infinite-volume (or limiting) Gibbs measures corresponding
to a given Hamiltonian. The existence of such measures for a wide class of



Hamiltonians was established in the ground-breaking work of
Dobrushin. (39) However, the complete analysis of the set of limiting Gibbs
measures for a specific Hamiltonian is often a difficult problem. On a cubic
lattice, for small values of b=1

T , where T > 0 is the temperature, a Gibbs
measure is unique (refs. 33, 39) which reflects a physical fact that at high
temperatures there is no phase transition. But the analysis for low temper-
atures requires specific assumptions about the model, in particular, about
the form of the Hamiltonian. In particular, if there are only binary interac-
tions then the problem of describing limiting Gibbs measures is more fea-
sible. The classical example of such a model is the Ising model, with two
values of spin ± 1. It was considered in refs. 33 and 44 and became actively
researched in the 1990’s and afterwards. (7–11, 36, 45) In the present paper we
consider models with competing ternary and binary interactions on a
Cayley tree. We note that the Ising models on a Cayley tree with competing
interactions have been studied extensively (see refs. 25–27, 38) since the
appearance of the Vannimenus model (see ref. 43), in which the physical
motivations for the urgency of study such models was presented. In all of
these works no exact solutions of the phase transition problem were found,
but some solutions for specific parameter values were presented. In ref. 16
it has been proved that for the model with ternary and binary interactions
a phase transition occurs for medium temperature values, which differs
essentially from the well-known results for the ordinary Ising model, in
which phase transition occurs at low temperature. It is known, that in the
quantum statistical mechanics concrete systems are identified with states on
corresponding algebras. In many cases the algebra can be chosen to be a
quasi-local algebra of observables. The states on these algebras, satisfying
KMS-condition, as is known, describe equilibrium states of the quantum
system. On the other hand, for classical systems with the finite radius of
interactions, limiting Gibbs measures are know to be Markov random
fields. In connection with this, there arises a problem of constructing
analogues of non-commutative Markov chains. In ref. 1 Accardi explored
this problem, he introduced and studied non-commutative Markov states
on the algebra of quasi-local observables, which were agreed with the clas-
sical Markov chains. In refs. 2 and 23 studied modular properties of the
non-commutative Markov states.

The type analysis of the quasi-free factors (i.e., factors generated by
quasi-free representations) has been an interesting problem since the
appearance of the pioneering work of Araki and Wyss. (5) In ref. 31 was
constructed a family of representations of uniformly hyperfinite algebras,
which can be treated as a free quantum lattice system. In this case factors
corresponding to these representations had type IIIl, l ¥ (0, 1). More
general constructions of product states were considered in ref. 4.
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In the case CAR-algebra, the rough classification into types I., II1,
II., and III was obtained in the 60’s by several authors. (15, 32) In ref. 30 it
has described the classification of type III quasi-free factors in terms of
spectral properties of positive operators parameterizing quasi-free states. It
is known, (3, 30) that every quasi-free state on CAR-algebra can be regarded
as the product state on A=ên \ 1 M2(C).

Observe that the product states can be viewed as the Gibbs states of
the Hamiltonian system in which interactions between particles of the
system are absent, i.e., the system is a free lattice quantum spin system. So,
it is interesting to consider the quantum lattice systems with non-trivial
interactions, which leads us, as it was mentioned above, to the considera-
tion of the Markov states. Simple examples of such systems are the Ising
and Potts models, which have been studied in many papers. (36, 39) We note
that all Gibbs states corresponding to these models are Markov random
fields. Full type analysis of von Neumann algebras associated with the
Markov states is still an open problem. In ref. 28 for the Ising model on a
Cayley tree the types of factors corresponding to translation-invariant
Gibbs states were found. In ref. 29 for a class of non-homogeneous Potts
model it was proved that a von Neumann algebra associated with the
unordered phase of this model is a factor of type III1. Some particular
cases of the Markov states were considered in ref. 22.

The present paper is devoted to the study the structure of the set of
Gibbs measures of the model considered in ref. 16 and the type analysis of
some class of Markov states, which correspond to these Hamiltonian
systems. More precisely, we consider the extremity of Gibbs measures and
determine the types of von Neumann algebras generated by GNS-repre-
sentation associated with diagonal states corresponding to the extreme
Gibbs measures. So, new examples of factors associated with physical
systems will be constructed.

The paper is organized as follows.
In Section 2 we give some preliminary definitions of a model with

competing ternary and binary interactions on a Cayley tree and corre-
sponding Gibbs measures. Also, we recall some definitions from von
Neumann algebras theory.

In Section 3 we reduce the problem of describing limit Gibbs measures
to the problem of solving a nonlinear functional equation.

In Section 4 we consider translation-invariant Gibbs measures of the
model. We prove that the minimum and maximum translation-invariant
Gibbs measures are extreme. Two periodic (with period 2) and uncountable
number of distinct non-translation-invariant Gibbs measures are con-
structed. It is shown that they are extreme.
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In Section 5, we determine the types of von Neumann algebras gener-
ated by GNS-representation associated with diagonal states corresponding
to the extreme periodic measures. Namely, it is shown, that an algebra
associated with the unordered phase is a factor of type IIIl, where
l=exp{ − 2bJ2}, b > 0 is the inverse temperature. We find conditions such
that, if they are satisfied, then von Neumann algebras associated with the
periodic Gibbs measures are factors of type IIId, otherwise they have type
III1.

In the final Section 6 we discuss the obtained results.

2. DEFINITIONS AND PRELIMINARY RESULTS

The Cayley tree Ck (see ref. 6) of order k \ 1 is an infinite tree, i.e., a
graph without cycles, from each vertex of which exactly k+1 edges issue.
Let Ck=(V, L, i) , where V is the set of vertices of Ck, L is the set of edges
of Ck and i is the incidence function associating each edge l ¥ L with its
endpoints x, y ¥ V. If i(l)={x, y}, then x and y are called nearest neigh-
bouring vertices, and we write l=Ox, yP. The distance d(x, y), x, y ¥ V on
the Cayley tree is defined by the formula

d(x, y)=min{d | ,x=x0, x1,..., xd − 1, xd=y ¥ V such that the pairs

Ox0, x1P,...,Oxd − 1, xdP are nearest neighbouring vertices}.

For the fixed x0 ¥ Ck we set

Wn={x ¥ V | d(x, x0)=n},

Vn= 0
n

m=1
Wm={x ¥ V | d(x, x0) [ n},

Ln={l=Ox, yP ¥ L | x, y ¥ Vn},

for an arbitrary point x0 ¥ V. Denote |x|=d(x, x0), x ¥ V.
Three vertices x, y, z ¥ V is called ternary neighboring vertices if Ox, yP

and Oy, zP are nearest neighboring vertices, here x, z ¥ Wn and y ¥ Wn − 1 for
some n ¥ N, and it is denoted by Ox, y, zP.

A collection of the pairs Ox, x1P,..., Oxd − 1, yP is called a path from the
point x to the point y. We write x < y if the path from x0 to y goes through
x. Call vertex y a direct successor of x if y > x and x, y are nearest neigh-
bors. Denote by S(x) the set of direct successors, i.e.,

S(x)={y ¥ Wn+1 : d(x, y)=1}, x ¥ Wn.

Observe that any vertex x ] x0 has k direct successors and x0 has k+1.
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Proposition 2.1 (see ref. 17). There exists a one-to-one corre-
spondence between the set V of vertices of the Cayley tree of order k \ 1
and the group Gk of the free products of k+1 cyclic groups of the second
order with generators a1, a2,..., ak+1.

Let us define a group structure on the group Gk as follows. Vertices
which corresponds to the ‘‘words’’ g, h ¥ Gk are called nearest neighbors
and are connected by an edge if either g=hai or h=gaj for some i or j.
The graph thus defined is a Cayley tree of order k.

Consider a left (resp. right) transformation shift on Gk defined as: for
g0 ¥ Gk we put

Tg0
h=g0h (resp. Tg0

h=hg0) -h ¥ Gk.

It is easy to see that the set of all left (resp. right) shifts on Gk is isomorphic
to the group Gk.

We consider models where the spin takes values in the set F={−1, 1}
and assigned to the vertices of the tree. A configuration s on V is then
defined as a function x ¥ V Q s(x) ¥ F; the set of all configurations coin-
cides with W=FV. The Hamiltonian is of competing ternary and binary
model has the form

H(s)=−J2 C
Ox, y, zP

s(x) s(y) s(z) − J1 C
Ox, yP

s(x) s(y) (2.1)

where J1, J2 ¥ R are coupling constants and s ¥ W.
We consider a standard s-algebra F of subsets of W generated by

cylinder subsets, all probability measures are considered on (W, F). A prob-
ability measure m is called a a Gibbs measure (with Hamiltonian H) if it
satisfies the DLR equation: -n=1, 2,... and sn ¥ FVn:

m({s ¥ W : s|Vn
=sn})=F

W

m(dw) nVn
w|Wn+1

(sn)

where nVn
w|Wn+1

is the conditional probability

nVn
w|Wn+1

(sn)=Z−1(w|Wn+1
) exp(−bH(sn || w|Wn+1

)).

where b > 0. Here sn |Vn
and w|Wn+1

denote the restriction of s, w ¥ W to Vn

and Wn+1 respectively. Next, sn : x ¥ Vn Q sn(x) is a configuration in Vn and
H(sn || w|Wn+1

) is defined as the sum H(sn)+U(sn, w|Wn+1
) where
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H(sn)=−J2 C
Ox, y, zP: x, y, z ¥ Vn

sn(x) sn(y) sn(z)

−J1 C
Ox, yP: x, y ¥ Vn

sn(x) sn(y)

U(sn, w|Wn+1
)=−J2 C

Ox, y, zP: x, z ¥ Wn+1, y ¥ Wn

w(x) sn(y) w(z)

−J1 C
Ox, yP: x ¥ Vn, y ¥ Wn+1

sn(x) w(y).

Finally, Z(w|Wn+1
) stands for the partition function in Vn with the boundary

condition w|Wn+1
:

Z(w|Wn+1
)= C

s̃n ¥ F
Vn

exp(−bH(s̃n || w|Wn+1
).

It is known (see ref. 39) that for any sequence w (n) ¥ W, any limiting point
of the measures ñ

Vn
w(n)|Wn+1

is a Gibbs measure. Here ñ
Vn
w(n)|Wn+1

is a measure on
W such that -nŒ > n:

ñ
Vn
w(n)|Wn+1

({s ¥ W: s|VnŒ
=snŒ})=˛n

Vn
w(n)|Wn+1

(snŒ |Vn
), if snŒ |VnŒ 0Vn

=w (n)|VnŒ 0Vn

0, otherwise.

We now recall some facts from von Neumann algebra theory.
Let B(H) be an algebra of all bounded linear operators on a Hilbert
space H (over the field of complex numbers C). A weak (operator) closed
*-subalgebra N in B(H) is called von Neumann algebra if it contains
the identity operator E. By Proj(N) it is denoted the set of all projec-
tions in N. A von Neumann algebra is a factor if its center Z(N)
(={x ¥ N : xy=yx, -y ¥ N}) is trivial, i.e., Z(N)={l1 | l ¥ C}. The
von Neumann algebras split into the classes I (In, n < ., I.), II (II1, II.),
and III. (12)

An element x ¥ N is called positive if there is an element y ¥ N such
that x=ygy. A linear functional w on N is called a state if w(xgx) \ 0 for
all x ¥ N and w(1)=1. A state w is said to be normal if w(supa xa)=
supa w(xa) for any bounded increasing net {xa} of positive elements of N.
A state w is called a trace (resp. faithful) if the condition w(xy)=w(yx)
holds for all x, y ¥ N (resp. if the equality w(xgx)=0 implies x=0).

Let N be a factor, w be a faithful normal state on N and sw
t be the

modular group associated with w (see ref. 12, Definition 2.5.15). We let
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C(sw) denote the Connes spectrum of the modular group sw
t (see ref. 14,

Definition 2.2.1).

Definition (see ref. 14). The factor N is of type

(i) III1, if C(sw)=R;

(ii) IIIl, if C(sw)={n log l, n ¥ Z}, l ¥ (0, 1);

(iii) III0, if C(sw)={0}.

(See, e.g., refs. 12 and 42 for details of von Neumann algebras and the
modular theory of operator algebras.)

3. CONSTRUCTION OF GIBBS MEASURES

In this section we give the construction of a special class of limiting
Gibbs measures for the competing ternary and binary model on a Cayley
tree.

Let h: x Q R be a real valued function of x ¥ V. Given n=1, 2,... con-
sider the probability measure m (n) on FVn defined by

m (n)(sn)=Z−1
n exp 3−bH(sn)+ C

x ¥ Wn

hxs(x)4 . (3.1)

Here, as before, b=1
T and sn : x ¥ Vn Q sn(x) and Zn is the corresponding

partition function:

Zn= C
s̃n ¥ WVn

exp 3bH(s̃n)+ C
x ¥ Wn

hxs̃(x)4 .

The consistency condition for m (n)(sn), n \ 1 is

C
s(n)

m (n)(sn − 1, s (n))=m (n − 1)(sn − 1), (3.2)

where s (n)={s(x), x ¥ Wn}.
Let V1 … V2 … · · · 1.

n=1 Vn=V and m1, m2,... be a sequence of proba-
bility measures on FV1, FV2,... satisfying the consistency condition (3.2).
Then, according to the Kolmogorov theorem, (37) there is a unique limit
Gibbs measure mh on W such that for every n=1, 2,... and sn ¥ FVn the
following equality holds

m({s|Vn
=sn})=m (n)(sn). (3.3)
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The following statement describes conditions on hx guaranteeing the
consistency condition of measures m (n)(sn). In the sequel for the simplicity
we consider the case k=2.

Theorem 3.1. The measures m (n)(sn), n=1, 2,... satisfy the consis-
tency condition (3.2) if and only if for any x ¥ V the following equation
holds:

hx=
1
2

log
h2

1h2e2(hy+hz)+h1(e2hy+e2hz)+h2

e2(hy+hz)+h1h2(e2hy+e2hz)+h2
1

(3.4)

here h1=e2bJ1, h2=e2bJ2, and Oy, x, zP are ternary neighbors.

Proof. Necessity. According to the consistency condition (3.2) we
have

Zn − 1

Zn
C
s(n)

exp 3−bHn − 1(sn − 1)+bJ1 C
x ¥ Wn − 1

s(x)(s(y)+s(z))

+bJ2 C
x ¥ Wn − 1

s(x) s(y) s(z)+ C
x ¥ Wn − 1

C
y ¥ S(x)

hys(y)4

=exp 3 − bHn − 1(sn − 1)+ C
x ¥ Wn − 1

hxs(x)4. (3.5)

Whence we get

Zn−1

Zn
C
s(n)

D
x ¥ Wn−1

exp{s(x)[bJ1(s(y)+s(z))+bJ2s(y) s(z)]+hys(y)+hzs(z)}

= D
x ¥ Wn−1

exp{hxs(x)}. (3.6)

Let s (n)
x ={s(y), s(z)}, x ¥ Wn − 1. Then it is easy to see that s (n)=

1x ¥ Wn − 1
s (n)

x . Hence

Zn−1

Zn
D

x ¥ Wn−1

C
s(n)

x

exp{s(x)[bJ1(s(y)+s(z))+bJ2s(y) s(z)]+hys(y)+hzs(z)}

= D
x ¥ Wn−1

exp{hxs(x)}. (3.7)
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Now fix x ¥ Wn − 1 and rewrite (3.7) for the cases s(x)=1 and
s(x)=−1 then we can find

;s
(n)
x ={s(y), s(z)} exp{bJ1(s(y)+s(z))+bJ2s(y) s(z)+hys(y)+hzs(z)}

;s
(n)
x ={s(y), s(z)} exp{−bJ1(s(y)+s(z)) − bJ2s(y) s(z)+hys(y)+hzs(z)}

=exp{2hx}. (3.8)

Denote

W1=exp(2J1b+J2b+hy+hz)+exp(−J2b − hy+hz)

+exp(−J2b+hy − hz)+exp(−2J1b+J2b − hy − hz)

W−1=exp(−2J1b − J2b+hy+hz)+exp(J2b − hy+hz)

+exp(J2b+hy − hz)+exp(2J1b − J2b − hy − hz).

It then follows from (3.8) that

exp{2hx}=
W1

W−1
. (3.9)

The equality (3.9) implies (3.4).

Sufficiency. From (3.6), (3.7), (3.8), (3.9), we get (3.4) and hence (3.2).
The theorem is proved.

According to Theorem 3.1 the problem of describing of Gibbs mea-
sures is reduced to the description of solutions of the functional equation
(3.4).

4. EXTREMITY OF GIBBS MEASURES

4.1. Extremity of Translation-Invariant Gibbs Measures

This subsection is devoted to translation-invariant Gibbs measures
and we consider a problem of extremity ones.

According to Proposition 2.1 any transformation S of the group Gk

induces a shift automorphism S̃ : W Q W by

(S̃s)(h)=s(Sh), h ¥ Gk, s ¥ W.

By Gk we denote the set of all shifts of W.
We say that a Gibbs measure m on W is translation-invariant if for any

T ¥ Gk the equality m(T(A))=m(A) is valid for all A ¥ F.
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The analysis of the solutions of (3.4) is rather tricky. It is natural to
begin with translation-invariant solutions where hx=h is constant for all
x ¥ V. It is clear that a Gibbs measure corresponding to this solution is
translation-invariant. This case has been investigated in ref. 16.

In this case from (3.4) we virtue

u=
h2

1h2u2+2h1u+h2

u2+2h1h2u+h2
1

(4.1)

where u=e2h.
Denote g=h1(2 − h1), and

Q=−
4g3h4

2+(g4+18g2 − 27)h2
2+4g3

108
.

Proposition 4.1. (see ref. 16). At h1 > 3 for all pairs (h1, h2) such
that Q < 0 Eq. (4.1) has three positive solutions ug

1 < ug
2 < ug

3 . Otherwise
Eq. (4.1) has a unique solution u*.

By m1, m2, m3 we denote Gibbs measures corresponding to these solu-
tions. As a consequence of Proposition 4.1 we can formulate the following

Corollary 4.2. At h1 > 3 and Q < 0 there are three translation-
invariant Gibbs measures m1, m2, m3.

Denote ux=exp(2hx), x ¥ V. Then the functional equation (3.4) is
rewritten as follows

ux=
h2

1h2uyuz+h1(uy+uz)+h2

uyuz+h1h2(uy+uz)+h2
1

(4.2)

here Oy, x, zP are ternary neighboring vertices.

Proposition 4.3. Let h1 > 3, Q < 0 and ux be a solution of Eq. (4.2).
Then

ug
1 [ ux [ ug

3 for any x ¥ V.

Proof. It is clear that ux > 0, -x ¥ V. Put

f(x, y)=
h2

1h2xy+h1(x+y)+h2

xy+h1h2(x+y)+h2
1

, x, y > 0. (4.3)
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Observe that the system

˛ “f(x, y)
“x

=0

“f(x, y)
“y

=0

has solutions only on the line x=y. Therefore, consider a function g(x)=
f(x, x). One may show that the function g(x) is increasing on (0, .) at
h1 > 3 and Q < 0. Hence we conclude that h2/h2

1 < f(x, y) < h2
1h2, for all

x, y > 0. Now we consider the function on x, y ¥ (h2/h2
1, h2

1h2). By similar
reason as above we get

g 1 h2

h2
1

2 < f(x, y) < g(h2
1h2).

Repeating this argument one gets

g (n)1 h2

h2
1

2 < f(x, y) < g (n)(h2
1h2),

for all n \ 1. Here g (n) is the n-th iterate of the map x Q g(x). The sequence
g (n)(h2

1h2) is decreasing and bounded below by ug
3 . Its limit is a fixed point

of g and thus equal to ug
3 . This proves that ux < ug

3 . The lower estimate of
ux is found in a similar manner. This completes the proof.

Theorem 4.4. For the model (2.1) with parameters J1, J2 ¥ R on the
Cayley tree C2 the following assertions hold true

(i) if h1 > 3, Q < 3 then the measures m1 and m3 are extreme;

(ii) in the opposite case there is a unique Gibbs measure mg(=m2),
i.e., there is no phase transition.

Proof. (i) Using Proposition 4.3 and by similar argument as in the
proof of Theorem 12.31 (21) we can show the extremity of measures m1, m3.

(ii) In this case Proposition 4.1 and 4.3 imply that ug
1 =ug

2 =ug
3 =u*.

Hence we have only Gibbs measure and according to Theorem 12.6 (21) we
conclude that the measure m* is extreme. The theorem is proved.

Remark. We note that at J1=0 according to Theorem 4.4 for the
considered model there is a unique Gibbs measure m0. This measure corre-
sponds to the solution hx=0, x ¥ V, moreover it is extreme and the
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unordered phase, i.e., the spin s(x) takes its values ± 1 with respect to m0

with probability 1/2.

4.2. Extremity of Periodic Gibbs Measures

Let Gk be a free product of k+1 cyclic groups of order two. According
to Proposition 2.1 there is a one-to-one correspondence between the set of
vertices V of the Cayley tree Ck and the group Gk. Let Ĝk … Gk be a normal
subgroup of finite index.

Definition. We say that h={hx : x ¥ Gk} is Ĝk-periodic if hyx=hx for
all x ¥ Gk and y ¥ Ĝk.

A Gibbs measure is called Ĝk-periodic if it corresponds to Ĝk-periodic
function h.

Observe that a translation-invariant Gibbs measure is Gk-periodic.
In the sequel we consider the group G2.
Denote

G (2)
2 ={x ¥ G2 : the length of word x is even}.

In this subsection we will construct G (2)
2 -periodic Gibbs measures and

show that they are extreme.
A G (2)

2 -periodic Gibbs measure corresponds to function hx defined by

hx=˛h1, if x ¥ G (2)
2 ,

h2, if x ¥ G2 0G (2)
2 .

(4.4)

According to Theorem 3.4 function defined by this fashion must satisfy
Eq. (3.4) in our case that equation has a form:

˛u=
h2

1h2v2+2h1v+h2

v2+2h1h2v+h2
1

,

v=
h2

1h2u2+2h1u+h2

u2+2h1h2u+h2
1

,
(4.5)

where u=exp{2h1}, v=exp{2h2}.
The analysis of Eq. (4.5) is carried in the following

Proposition 4.5. If h1 ¥ (0; `5 − 2) and h2 ¥ (0; `t1) 2 (`t2 ;+.)
or h1 ¥ (`5 − 2; `2 − 1) and h2 > 0 then the equation (4.5) has two solu-
tions (ug, vg), (vg, ug). Here
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t1, 2=
(h1+1)3 (h2

1+2h1 − 1)2 (h1+1 ± `(h2
1 − 1)(h2

1+4h1+1)(h2
1+4h1 − 1))

8h3
1(h1+2)

−
4h2

1(h2
1(h1+1)2+1)

8h3
1(h1+2)

and ug, vg are the solutions of the equation:

h2
1((h1h2)2+2h1h2

2+1) x2+h2(4h3
1+h4

1+4h2
1 − 1) x+h2

1(h2
1+2h1+h2

2)=0.
(4.6)

Proof. If u=v then it is clear that we get a translation-invariant
Gibbs measure. To obtain the periodic measures we assume u ] v. From
(4.5) we find

h2
1((h1h2)2+2h1h2

2+1) u5 − h2((h3
1h2)2 − 4(h2

1h2)2 − 6h3
1 − 4h2

1+1) u4

−2h1((h2
1h2)2 − h3

1 − 4(h1h2)2 − h1h2
2+h2

2) u3

+2h1h2(h4
1 − h3

1h2
2 − 4h2

1 − h1+1) u2

+(h6
1 − 4h4

1 − 6h3
1h2

2 − 4(h1h2)2+h2
2) u − h2

1h2(h2
1+2h1+h2

2)=0.

From the last equation we get

[u3 −h1h2(h1 −2) u2+h1(h1 −2) u−h2]

×[h2
1((h1h2)2+2h1h2

2+1) u2+h2(4h3
1+h4

1+4h2
1 −1) u+h2

1(h2
1+2h1+h2

2)]

=0.

Observe that the solutions of equation

u3 − h1h2(h1 − 2) u2+h1(h1 − 2) u − h2=0 (4.7)

describe only translation-invariant measures (see (4.1)). Hence the periodic
measures correspond to the solutions of Eq. (4.6).

Full analysis of Eq. (4.6) shows that parameters h1, h2 must satisfy the
condition of the proposition. This completes the proof.

By m12 and m21 we denote G (2)
2 -periodic measures corresponding to the

solutions (ug, vg) and (vg, ug) respectively.
Thus we have the following
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Theorem 4.6. For the model (2.1) the following assertions hold:

(i) If J1 > 0 then G (2)
2 -periodic Gibbs measures coincide with

translation - invariant Gibbs measures.
(ii) If J1 < 0 and all conditions of Proposition 4.6 be satisfied then

there are three G (2)
2 -periodic Gibbs measures m12, m21, and mg. Here mg is the

measure corresponding to the unique solution of Eq. (4.7).

The proof immediately follows from Propositions 4.1 and 4.5.

Remark. We note that measure mg is a translation-invariant and
measures m12, m21 are not.

The next theorem describes the extremity of m12, m21.

Theorem 4.7. Let all conditions of Proposition 4.5 be satisfied.
Then the measures m12, m21 are extreme.

Proof. We note that in this case Proposition 4.3 is also valid. By
argument similar to the proof of Theorem 4.4 one can show that the
measures m12, m21 are extreme.

4.3. Non Translation-Invariant Gibbs Measures

In this section we consider the case h1 > 3, h2 > 0. We use the measures
m1, m3 to show that Eq. (3.4) admits uncountably many non-translation-
invariant solutions.

Take an arbitrary infinite path p={x0, x1,...} on the Cayley tree
starting at the origin x0 : x0=x0. We will establish a 1-1 correspondence
between such paths and real numbers t ¥ [0; 1]. (8, 19, 35) We will map the
path p to a function hp : x ¥ V Q hp

x satisfying (3.4). Path p splits Cayley
tree C2 into two components C2

1 and C2
2.

Function hp is then defined by

hp
x=˛ log ug

1 , if x ¥ C2
1

log ug
3 , if x ¥ C2

2.
(4.8)

Denote F(x, y)=1
2 log f(exp(2x), exp(2y)), here f is defined by (4.3).

Proposition 4.8. If h2 > 1 then there is a number 0 < c=c(h1, h2)
< 1 such that the following inequality holds

|F(x1, y) − F(x2, y)| [ c |x1 − x2 | for any x1, x2, y ¥ R.

Proof. Straightforward.
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With the help of Proposition 4.8 it is easy to prove the following
Theorem 4.9 similar to Theorem 3 of ref. 35.

Theorem 4.9. For any infinite path p there exists a unique function
hp satisfying (3.4), (4.8).

In the standard way (see refs. 8, 19, 34, 35) one can prove that func-
tions hp(t) are different for different t ¥ [0; 1].

Now let m(t) denote the Gibbs measure corresponding to the function
hp(t), t ¥ [0; 1].

Using Theorem 4.4, similar to analogous theorem of ref. 8 we can
prove the following

Theorem 4.10. For any t ¥ [0; 1], there exists a unique extreme
Gibbs measure m(t). Moreover, the above Gibbs measures m1, m3 are
specified as m(0)=m3 and m(1)=m1.

Because the measures m(t) are different for different t ¥ [0; 1] we
obtain a continuum of distinct extreme Gibbs measures.

Remark. If we consider the case (ii) of Theorem 4.6 an analogous
result as Theorem 4.10 one can prove with the aid of the periodic measures
m12 and m21.

5. DIAGONAL STATES GENERATED BY GIBBS MEASURES AND

CORRESPONDING VON NEUMANN ALGEBRAS

5.1. Diagonal States Associated with the Unordered Phase m 0.

In this subsection we consider a case J1=0 and we determine a type of
von Neumann algebra generated by the GNS-representation associated
with the diagonal state corresponding to the unordered phase m0.

Consider Cg-algebra A=êC
k M2(C), where M2(C) is the algebra of

2 × 2 matrices over the field C of complex numbers. By eij, i, j ¥ {1, 2} one
denotes the basis matrices of the algebra M2(C). We let CM2(C) denote
the commutative subalgebra of M2(C) generated by the elements eii

i ¥ {1, 2}. We set CA=êC
k CM2(C). Elements of commutative algebra

CA may be regarded as functions on the space W={e11, e22}C
k
. Given a

measure m on the measurable space (W, B), where B is the s-algebra
generated by cylindrical subsets of W. We construct a state wm on A as
follows. We set wm(x)=0 if the tensor monomial x of the basis matrices
eij, i, j ¥ {1, 2} contains at least one partial isometry. If x ¥ CA, we set
wm(x)=>W x dm. The state thus obtained was introduced in ref. 42 and was
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said to be diagonal. In other words, if P: A Q CA is a conditional expecta-
tion, then the state wm can be defined by wm(x)=m(P(x)), x ¥ A, here
m(P(x)) means the integral of a function P(x) under measure m, i.e.,
m(P(x))=>W P(x)(s) dm(s).

By w0 we denote the diagonal state generated by the unordered
phase m0. On the finite dimensional Cg-subalgebra AVn

=êVn
M2(C) … A

we rewrite the state w0 as follows

w0(x)=
tr(eH̃(Vn)x)
tr(eH̃(Vn))

, x ¥ AVn
, (5.1)

where tr is a trace on AVn
. The term s(x) s(y) s(z) in (3.2) we represent as

a diagonal element of M2(C) é M2(C) é M2(C) in the standard basis as
follows

s(x) s(y) s(z)=R
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

S . (5.2)

Using (5.2), the form of Hamiltonian (2.1), (3.1), and (5.1) the Hamiltonian
H̃(Vn) in the standard basis of AVn

has the form

H̃(Vn)= C
Ox, y, zP: x, y, z ¥ Vn

FOx, y, zP,

here and below

FOx, y, zP=RA O O O
O B O O
O O B O
O O O A

S , A=R log p1 0
0 log p2

S , B=R log p2 0
0 log p1

S ,

(5.3)

p1=
1

e−2a+1
, p2=

e−2a

e−2a+1
, a=bJ2. (5.4)
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Hence the state w0 is an extreme Gibbs state for quantized Hamiltonian

H̃= C
Ox, y, zP

FOx, y, zP.

Denote M=pw0
(A)œ, where pw0

is a GNS-representation associated
with w0 (see ref. 12, Definition 2.3.18). Our goal in the present section is to
determine a type of M.

Remark. In ref. 42 general properties of a representation associated
with diagonal state were studied, but concrete constructions of states were
not considered there. In ref. 30 a deep classification of types of the factors
generated by quasi-free states has been obtained. For translation-invariant
Markov states the corresponding type analysis has been made in ref. 18.

According to the extremity of w0 (see ref. 13, Theorem 5.3.30) we find
that M is a factor.

We note that the modular group of M associated with w0 is defined by

sw0
t (x)= lim

Vn Q V
exp{itH̃(Vn)} x exp{−itH̃(Vn)}, x ¥ M (5.5)

here as before H̃(L)=;Ox, y, zP: x, y, z ¥ Vn
FOx, y, zP. For the last limit to exist we

must show that a norm of potential H̃ is finite (see ref. 13, Theorem 6.2.4).
First of all we recall the definition of a norm of a potential Y=
;X … C

k Y(X) as follows:

||Y||d= C
n \ 0

edn 1 sup
x ¥ C

k
C

x ¥ X, |X|=n+1
||Y(X)||2 ,

where d > 0. Here Y(X) ¥ AX=êX M2(C).
Now we compute ||H̃||d :

||H̃||d=e2d 1 sup
x ¥ C

k
C

x ¥ X, X={u, v, w}
||FOu, v, wP ||2

=ke2d sup
{u, v, w} ¥ L

||FOu, v, wP ||=ke2d max
i

|log pi | < ..

Hence the norm of H̃ is finite, therefore the limit in (5.5) exists.
By Ms one denotes the centralizer of w0, which is defined as

Ms={x ¥ M : sw0
t (x)=x, for all t ¥ R}.
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Lemma 5.1. For the modular group sw0
t and the number t0=

−2p/log l, where l=exp{−2a} the equality holds

sw0
t0

=Id,

here and below Id is the identity mapping and a=bJ2.

Proof. From (5.3) and (5.4) we have

exp(itFOx, y, xP)=Rexp(itA) O O O
O exp(itB) O O
O O exp(itB) O
O O O exp(itA)

S

=
1

(l+1) it
R

1 0 0 0 0 0 0 0
0 l it 0 0 0 0 0 0
0 0 l it 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 l it 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 l it

S .

Then from (5.5) and the last equality we find that sw0
t0

=Id. This completes
the proof.

Let us prove the following useful

Proposition 5.2. Let N be a factor, j be a faithful normal state on
N and let sj

t be its modular group. If for the number t0=−2p/log l the
equality sj

t0
=Id is valid then N can not be a factor of type III1.

Proof. Let us assume that N be a factor of type III1. Denote a=sj
t0

.
According to the Lemma 2.9 (24) the crossed-product N×a Z is a factor of
type IIIl.

On the other hand, according to Section 22.6 in ref. 41 every element

xA=C
n

pa(a(n)) un, A={a(n)} … N,

of the crossed-product N×a Z belongs to the center of this algebra if and
only if the following relations hold:
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(i) a(n) an(x)=xa(n) for all x ¥ N, n ¥ Z;

(ii) an(a(m))=a(m) for all m, n ¥ Z.
Here pa and un are related to the crossed-product.

Now define a sequence AD={aD(n)} as follows

aD(n)=˛1, if |n| [ D
0, if |n| > D.

Here D is any fixed positive integer.
Then it is easy to see that the conditions (i) and (ii) for the element xAD

is fulfilled. So the element xAD
belongs to the center. But xAD

¨ C1. This
contradicts to the factority of N×a Z. The proposition is thus proved.

Since the state w0 is translation-invariant then, due to Corollary 4.3 of
ref. 40, the factor M has type either IIId or III1. According to Lemma 5.1
and Proposition 5.2 we conclude that factor M has type IIId for some
d ¥ (0, 1). This means that the Connes’ spectrum C(sw0) of sw0 is the set
{n log d : n ¥ Z}, i.e., C(sw0) is discrete. Then using Proposition 16.4 of
ref. 41, we find that the centralizer Ms is a factor. Now we are going to
show that d=l. To do this we compute the Connes’ spectrum.

It is known (see ref. 14, Proposition 2.2.2) that Connes’ spectrum C(a)
of a group of automorphisms a={ag}g ¥ G of von Neumann algebra N has
the following form

C(a)= 5 {Sp(ae) | e ¥ Proj(Z(Na)), e ] 0}, (5.6)

where ae(x)=a(exe), x ¥ eNe and Z(Ma) is the center of subalgebra

Na={x ¥ N : ag(x)=x, -g ¥ G}.

Here Sp(a) be the Arveson’s spectrum of a group of automorphisms a (for
more details, see refs. 14, 41).

Above we have just proved that Ms is a factor, this means
Z(Ms)=C1. Then the equality (5.6) implies C(sw0)=Sp(sw0).

We now consider the operator H̃(Vn)=;Ox, y, zP: x, y, z ¥ Vn
FOx, y, zP. We let

Sp(H̃(Vn)) denote the spectrum of the operator H̃(Vn). Setting

sw0, n
t (x)=exp{itH̃(Vn)} x exp{−itH̃(Vn)}, x ¥ M,

we obtain

Sp(sw0, n)=Sp(H̃(Vn)) − Sp(H̃(Vn))={p − q: p, q ¥ Sp(H̃(Vn))}. (5.7)
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From (5.3) it is evident that log pi ¥ Sp(HVn
), i=1, 2. Then (5.7)

implies that Sp(sw0, n) is generated by the elements

log 1pi

pj

2 , i, j=1, 2.

From (5.4) we have

pi

pj
=˛1, if i=j,

l−1, if i > j,
l, if j > i,

here as before l=e−2a. From this we get

Sp(sw0, n)={n log l}m
n=−m.

Hence we obtain

C(sw0)={n log l}n ¥ Z.

Consequently, we find that M is a factor of type IIIl.
So we have just proved the following

Theorem 5.3. A von Neumann algebra M corresponding to the
unordered phase of the model with ternary and binary interactions (2.1)
with J1=0 on the Cayley tree C2 is a factor of type IIIl, where
l=exp{−2bJ2}.

5.2. Diagonal States Associated with Periodic Extreme Gibbs

Measures

In this subsection we deal with the extreme G (2)
2 -periodic Gibbs mea-

sures constructed in Section 4 (J1, J2 ] 0).
Let m be an extreme G (2)

2 -periodic Gibbs measure, i.e., m is either
translation-invariant or G (2)

2 -periodic. By wm we denote the associated
diagonal state on Cg-algebra A. The diagonal state wm as in previous sub-
section is rewritten on AVn

as follows

wm(x)=
tr(eH̃m(Vn)x)

tr(eH̃m(Vn))
, x ¥ AVn

. (5.8)

844 Mukhamedov and Rozikov



By the reasoning similar to the one in the previous subsection we can
write the form of Hamiltonian H̃m(Vn) as follows:

H̃m(Vn)= C
Ox, y, zP: x, y, z ¥ Vn

FOx, y, zP+ C
Ox, yP: x, y ¥ Vn

FOx, yP+ C
x ¥ Wn

hxsz
x,

here as before FOx, y, zP is defined in (5.3), hx is a solution of Eq. (3.4) (see
Section 4) and

FOx, yP=RA1 O
O B1

S , A1=R log p11 0
0 log p22

S , B1=R log p22 0
0 log p11

S ,

(5.9)

p11=
1

l1+1
, p22=

l1

l1+1
, l1=exp{−2bJ1}, sz

x=R1 0
0 −1

S . (5.10)

We note that in our case hx can be a constant with values either hg
1 or

hg
3 (see Section 4.1) and a function which is defined by (4.4).

Denote Mm=pwm
(A)œ, where pwm

is a GNS-representation associated
with the state wm.

According to the extremity of wm we find that Mm is a factor.
Modular group sm

t of Mm associated with wm is similarly defined as
(5.5) where we use the expression H̃m(Vn) instead of H̃(Vn). Using (5.9),
(5.10) and by similar argument as in the previous Section 5.1 we may prove
the existence of the modular group sm

t .

Lemma 5.4. Let the following condition be satisfied: there exist
integers p and mi, i ¥ {1, 2, 3} and the smallest number d ¥ (0, 1) such that

p1

p11
=dm1,

p2

p22
=dm2,

p1

p22
=dm3, exp{hg}=dp, (5.11)

then for the modular group swm
t and the number t0=−2p/log d, the

equality holds

swm
t0

=Id.

Keeping in mind (5.9), (5.10) and repeating similar argument of the
proof of Lemma 5.1 one can prove Lemma 5.4.

As in the proof of Theorem 5.3 using Lemma 5.4 instead of Lemma 5.1
one can prove the following
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Theorem 5.5. Let the condition (5.11) be satisfied, then a von
Neumann algebra Mm corresponding to an extreme G (2)

2 -periodic Gibbs
measure m of the model with ternary and binary interactions (2.1) on the
Cayley tree C2 is a factor of type IIId. Otherwise Mm is a factor of type III1.

6. DISCUSSION OF RESULTS

In the Ising model to each point x of the lattice there is assigned a spin
variable s(x) taking its values +1 or −1. This model, at first considered as
a ferromagnetic model, became a focus of active research and has various
applications in many other fields of physics, chemistry, biology and even
sociology. The model considered above (2.1) is a natural generalization of
the Ising model. In refs. 26, 27 one gives ‘‘physical’’ motivations and
actualities for exploring such models. In these and other papers the model
(2.1) has been considered on such structures as Husimi tree (26, 27) and
Kagome lattice. (26) We note, that in all in these works an exact solution of
phase transitions was not obtained, one only gave solutions for the certain
concrete values of parameters.

According to Theorem 3.1 a problem of describing limit Gibbs
measures was reduced to the problem of description of the solutions of
functional Eq. (3.4).

The proved Theorem 5.3 implies that at J1=0 there is no phase
transition for the considered model. We note that in ref. 16 the uniqueness
of the solution of (3.4) has been proved only in the class of constant
functions. It was known as a hypothesis that von Neumann algebras
corresponding to physical systems with non-trivial interactions have only
type III1. The last Theorem 5.3 shows that mentioned hypothesis is not
true for the considered model.
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